大学物理 ›› 2025, Vol. 44 ›› Issue (2): 20-.doi: 10.16854/j.cnki.1000-0712. 240334

• 教学研究 • 上一篇    下一篇

置换群的符号表示:Stick符号

沈尧,周池春,陈玉柱   

  1. 1. 中国人民公安大学 侦查学院,北京100038;  2. 大理大学 工程学院,云南 大理 871003;
    3. 天津工业大学,物理科学与技术学院,天津 300387 
  • 收稿日期:2024-07-22 修回日期:2024-07-30 出版日期:2025-04-18 发布日期:2025-04-24
  • 作者简介:沈尧(1981—),女,汉族,天津,中国人民公安大学侦查学院副教授,物理学博士,研究方向:数学物理、量子计算、量子信息
  • 基金资助:
    中央高校基本科研业务费专项资金(2022JKF02024)资助;国家自然科学基金(62106033)资助

The symbolic representation of permutation groups: Stick notation

SHEN  Yao1,ZHOU Chichun2*,CHEN Yuzhu3   

  1. 1. School of Criminal Investigation,People’s Public Security University of China,Beijing 100038,China;
    2. School of Engineering,Dali University,Dali,Yunnan 871003,China;
    3. School of Physical Science and Technology,Tiangong University,Tianjin 300387,China
  • Received:2024-07-22 Revised:2024-07-30 Online:2025-04-18 Published:2025-04-24

摘要: 群论教学是物理教学的重要组成部分,置换群则是离散群教学的最核心内容.群的概念深刻且复杂,传统教学中的符号表示和基于矩阵的群表示不够直观,这些都使初学者难以掌握群论的核心概念.群论教学中需要一种更直观、更有启发性的新方法,帮助初学者更容易领会与群有关的基本概念.在本文中,我们引入一种不同的符号表示,称之为Stick 符号表示,并且重点以3阶置换群为例进行介绍.这些符号能够直观展示群元作用、共轭、对易、子群和不变子群等基本概念,是一个有趣的新工具,能够有效提升群论教学效率.

关键词: 群论, 群表示, 置换群, 符号表示

Abstract: Group theory is a crucial component of physics teaching,with permutation groups being central to discrete group instruction. The concept of groups is profound and complex,and traditional symbolic and matrix-based representations used in teaching are often not intuitive. This makes it difficult for beginners to grasp the core concepts of group theory. Therefore,there is a necessary for a more intuitive and enlightening method in group theory education to help beginners more easily understand fundamental group-related concepts. In this paper,we introduce an alternative symbolic representation called Stick notation,focusing on the example of the 3-order permutation group. These symbols can intuitively demonstrate essential concepts such as group action,conjugation,commutativity,subgroups,and invariant subgroups. This new and engaging tool has the potential to significantly enhance the effectiveness of group theory education.

Key words:  , group theory, representation of group, permutation group, symbolic representation